Hypoxic pulmonary vasodilation: a paradigm shift with a hydrogen sulfide mechanism.
نویسندگان
چکیده
Hypoxic pulmonary vasoconstriction (HVC), an intrinsic and assumed ubiquitous response of mammalian pulmonary blood vessels, matches regional ventilation to perfusion via an unknown O(2)-sensing mechanism. Global pulmonary hypoxia experienced by individuals suffering from chronic obstructive pulmonary disease or numerous hypoventilation syndromes, including sleep apnea, often produces maladaptive pulmonary hypertension, but pulmonary hypertension is not observed in diving mammals, where profound hypoxia is routine. Here we examined the response of cow and sea lion pulmonary arteries (PA) to hypoxia and observed the expected HVC in the former and a unique hypoxic vasodilation in resistance vessels in the latter. We then used this disparate response to examine the O(2)-sensing mechanism. In both animals, exogenous H(2)S mimicked the vasoactive effects of hypoxia in isolated PA. H(2)S-synthesizing enzymes, cystathionine beta-synthase, cystathionine gamma-lyase, and 3-mercaptopyruvate sulfur transferase, were identified in lung tissue from both animals by one-dimensional Western blot analysis and immunohistochemistry. The relationship between H(2)S production/consumption and O(2) was examined in real time by use of amperometric H(2)S and O(2) sensors. H(2)S was produced by sea lion and cow lung homogenate in the absence of O(2), but it was rapidly consumed when O(2) was present. Furthermore, consumption of exogenous H(2)S by cow lung homogenate, PA smooth muscle cells, and heart mitochondria was O(2) dependent and exhibited maximal sensitivity at physiologically relevant Po(2) levels. These studies show that HVC is not an intrinsic property of PA and provide further evidence for O(2)-dependent H(2)S metabolism in O(2) sensing.
منابع مشابه
Modulation of hydrogen sulfide by vascular hypoxia
Hydrogen sulfide (H2S) has emerged as a key regulator of cardiovascular function. This gasotransmitter is produced in the vasculature and is involved in numerous processes that promote vascular homeostasis, including vasodilation and endothelial cell proliferation. Although H2S plays a role under physiological conditions, it has become clear in recent years that hypoxia modulates the production...
متن کاملHydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation.
How vertebrate blood vessels sense acute hypoxia and respond either by constricting (hypoxic vasoconstriction) or dilating (hypoxic vasodilation) has not been resolved. In the present study we compared the mechanical and electrical responses of select blood vessels to hypoxia and H2S, measured vascular H2S production, and evaluated the effects of inhibitors of H2S synthesis and addition of the ...
متن کاملHydrogen sulfide mediates hypoxic vasoconstriction through a production of mitochondrial ROS in trout gills.
Hypoxic pulmonary vasoconstriction (HPV) is an adaptive response that diverts pulmonary blood flow from poorly ventilated and hypoxic areas of the lung to more well-ventilated parts. This response is important for the local matching of blood perfusion to ventilation and improves pulmonary gas exchange efficiency. HPV is an ancient and highly conserved response, expressed in the respiratory orga...
متن کاملThiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing.
H2S derived from organic thiol metabolism has been proposed serve as an oxygen sensor in a variety of systems because of its susceptibility to oxidation and its ability to mimic hypoxic responses in numerous oxygen-sensing tissues. Thiosulfate, an intermediate in oxidative H2S metabolism can alternatively be reduced and regenerate H2S. We propose that this contributes to the H2S-mediated oxygen...
متن کاملPrecursors and inhibitors of hydrogen sulfide synthesis affect acute hypoxic pulmonary vasoconstriction in the intact lung.
The effects of hydrogen sulfide (H(2)S) and acute hypoxia are similar in isolated pulmonary arteries from various species. However, the involvement of H(2)S in hypoxic pulmonary vasoconstriction (HPV) has not been studied in the intact lung. The present study used an intact, isolated, perfused rat lung preparation to examine whether adding compounds essential to H(2)S synthesis or to its inhibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 298 1 شماره
صفحات -
تاریخ انتشار 2010